
International Journal of Intelligent Engineering and Systems, Vol.8, No.2, 2015  1 

 

 

Fault-Tolerant Lyapunov-Gain-Scheduled PID Control of a Quadrotor UAV  

 

Abderrahmen Bouguerra
1
*, Djamel Saigaa

 2
, Kamel Kara

3
, Samir Zeghlache

1
 

1Department of Electrical Engineering, M’sila University, Zip postal 166 Ichbilia 28000, M’sila, Algeria  
2Departments of Electronics, M’sila University, Zip postal 166 Ichbilia 28000, M’sila, Algeria 

3
Departments of Electronics, Blida University, Zip postal 270 Blida, Algeria 

* Corresponding author’s Email:rah_bou@yahoo.fr 

 

Abstract: The work has done in this paper concern the passive fault tolerant control. Based on Gain-Adaptive 

Proportional-Integral-Derivative (PID) using the approach from the theory of Lyapunov and their application to the 

model vertical flying drone Quadrotor type, the PID controller with fixed parameters may fail to provide acceptable 

control performance. To improve the PID control effect, new designs of the Lyapunov gain Scheduled PID controller 

(LGSPID) were presented in this paper. The proposed techniques were applied to the Quadrotor, where adaptive PID 

controllers were proposed for fault-tolerant control system in the presence of actuator faults. The parameters of PID 

controller were adjusted by an adaptation algorithm gradient type, used to tune in real-time the controller gain, the 

proposed adaptive PID controller was compared with the conventional PID. The obtained results confirm the 

effectiveness of the proposed method.  
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1. Introduction 

Fault-Tolerant Control (FTC) is a relatively new 

idea that makes possible to develop a control feed- 

back that allows keeping the required system perf- 

ormance in the case of faults[1]. The control 

strategy can perceive fault tolerant when there is an 

adapta- tion mechanism that changes the control 

law in the case of faults. 

Another solution is to use hardware redundancy 

in sensors and/or actuators. In general, FTC 

systems are classified into two distinct classes [2]: 

passive and active. In passive FTC [3, 4], 

controllers are designed to be robust against a set of 

presumed faults, therefore there is no need for fault 

detection. In contrast to passive ones, active FTC 

schemes react to system components faults actively 

by re- configuring control actions and by doing so 

the system stability and acceptable performance is 

maintained. 

A Quadrotor is an aircraft that is lifted and 

propelled by four rotors. The Control of Quadrotor 

can be achieved by varying the relative speed of 

each a rotor to change the thrust and torque pro- 

duced by each. Quadrotors are classified as rotor- 

craft, as opposed to fixed wing aircraft, because 

their lift is derived from four rotors [5]. 

PID controllers are the most familiar controller 

in the society of automation and control, due to 

their simple structure and wide variety of usage. 

These kinds of controllers are classified into two 

main categories in terms of parameters selection 

strategies. In the first group, controller gains are 

fixed during operation while in the second group, 

gains change based on the operating conditions. 

In the first group, gains are tuned by the 

designer and remain invariable during the 

operation. 

One of the most familiar methods for choosing 

control gains in this group is Ziegler-Nichols me- 

thod [6]. 

In most applications, due to structural changes 

the controlled system may lose its effectiveness, 

therefore the PID gains need to be continuously 

retuned during the system life span. To reduce the 

effort of retuning the gains and also in order to 
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increase system's performance, in the second group 

of controllers, the gains are adapted online. 

A number of methods have been proposed in 

documents for PID gain scheduling [7]. A stable 

gain-scheduling PID controller is developed based 

on grid point concept for nonlinear systems. 

Different gain scheduling methods have been 

studied and compared [8, 9] and a new PID scheme 

is proposed in which the controller gains are 

scheduled by a fuzzy inference scheme. Many 

methods and research work in this domain in 

[10-14]. And an intelligent control scheme uses a 

fuzzy switching mechanism, grey prediction and 

genetic algorithm (GA) in [15]. The interested 

readers can find a brief review of different fuzzy 

PID structures in [16]. 

In this work, adaptive Lyapunov Gain Sche- 

duled PID control approaches for a Quadrotor 

system was proposed. 

A PID controller is used to approach a law 

unknown ideal control online. Contrary to the work 

of [17-19], wherein the adaptation law is selected to 

ensure the decrease of a Lyapunov function 

candidate on the output error, the adaptive law, in 

this work was selected to minimize the gradient 

method a quadratic criterion of error at the input of 

the system, the error between the unknown ideal 

control and output of the PID controller [17-19]. 

The remainder of this paper is organized as 

follows. The model of the Quadrotor is described in 

Section II. The Lyapunov Gain Scheduled PID 

(LGSPID) strategy is designed in Section III. 

Section IV presents the simulation results to de- 

monstrate the effectiveness of the FTC Controller. 

Concluding remarks are provided in Section VI. 

2. Model of the auadrotor UAV 

In this section, the general dynamic model of a 

Quadrotor UAV was studied. 

A body-fixed frame ( ', , , )B O x y z  and the earth- 

fixed frame ( , , , )E O X Y Z  were assumed to be at 

the center of gravity of the Quadrotor UAV, where 

the z-axis was pointing upwards, as seen in Figure 

1. 

The orientation of Quadrotor UAV that referred 

to as roll, pitch and yaw was given by a vector 

( , , )    which was measured with respect to the 

earth coordinate frame E. 

Based on some basic assumptions as given be- 

low:  

 Design is symmetrical. 

 Quadrotor body is rigid. 

 Propellers are rigid. 

 

Figure1  The Quadrotor in an inertial frame 

 Free stream air velocity is zero. 

 The motors dynamics is relatively fast and 

can be neglected. 

 The flexibility of the blade is relatively 

small and can be neglected.  

 Drag is supposed to be linear, thus obeying 

Stokes’s law. 

The dynamic model [23] is: 
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The coriolis and centripetal vector denoted by 

 ,C   defined as below and computed as given by 

(9).  

   
1

,
2

T
C  





 



 
 
 

J J     (6)  

2 2

2

1

2

0

0

1

xx

c c c s c s

c s c cI

s

 



   

  













 

 
 
 
  

J       (7) 

2 2
2 2 2

2 2 0

0 0

xx

s c s c s s c c c c

s s c c sI c

c

 
            

        

 





 
 
 
  

J  (8) 

1,1 1, 2 1, 3

2

2,1

2, 2

2, 3

2

3,1

3, 2

3, 3

0

( 2 )

( 2 2 )

( 2 2 )

0

xx

xx

xx

xx

xx

C C C

C I c s s c s c

C I s c s

C I c

C I c s c c

C I c c s

C





       

   

 

    

    

  

  



 

  

  

















      (9) 

where m denotes the mass of the rotorcraft and 
2 2
, 2

XX YY ZZ
I I ml I ml   . 

Where (see Figure 1) [20, 21]: 

1 2 3 41u F F F F         (10) 

 1 2 3 44 d F F F Fu          (11) 

 2 43 F F lu          (12) 

 3 12 F F lu          (13) 

Table 1  The parameters of the quadrotor rotorcraft [22] 

Definition Parameter Value 

Lever length l 0.232m 

Mass of Quadrotor m 0.52kg 

Drag coefficient d 7.5e-7N ms2 

Thrust coefficient b 3.13e-5N s2 

Rotor inertia Jr 6e-5N kgm2 

Gravitational 

acceleration 
g 9.81 m/s2 

  

3. Ftc Strategy 

In this section, adaptive PID controllers were to 

best approximate the ideal command unknown (14) 

[24].  
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with α> 0, β> 0 and ε a small positive constant. 
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The derivative of (10) along paths (9) is bounded 

by: 
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The derivative of the filtered error can be 

written as [24] 
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where λ is positive constant. 

The three PID controller gains kp, ki and kd were 

considered here as adjustable parameters. To do this, 

an adaptive mechanism would be developed to 

minimize a quadratic criterion of the error between 

the ideal unknown command u  and the command 

pidu  provided, resulting from the PID controller. 

The ideal control law (14) was then approximated 

by a PID controller of the form. 

0
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l is the vector of parameters adjusted in the control, 

which is defined by: 
p i dl k k k      
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From equation (18) 

tanh( / ) ( )( )s s s g x u u  
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with: ( )
T

l
u e 
 
  

is optimal command and θ* 

is the optimal parameters. 

From equation (21) 

( ) tanh( / )ug x e s s s           (22) 

From (22), the law of adaptation parameters is 

given by 

 tanh( / )( )l s s se         (23) 

4. Simulation Result 

The proposed LGS-PID control scheme (fig.2) 

presented in this paper was tested on a model of the 

full Quadrotor helicopter model in presence of the 

actuators faults. 

It is assumed that a loss of control effectiveness 

of 40% by echelon the faults were taking place in 

the command u1, u2, u3 and u4 
at time instant t=35s 

and ends on time t=55s.  

The synthesis parameters are selected as Table 2. 

 

Figure 2  Synoptic scheme of the proposed control 

strategy 

Table 2  Synthesis parameters of the proposed 

controller 

Definition Parameter Value 

PID (φ) 

angle 
Kp, Ki, Kd  

Kp =4.5, Ki =1.5, Kd 

=1.5  

PID (θ) 

angle 
Kp, Ki, Kd 

Kp =3.5, Ki =0.5, Kd 

=2 

LGS-PID 

Z position 

Kp 
α=20, ε=0.001, β=10, 

υ=3, λ=5 

Ki 
α=10, ε=0.001, β=20, 

υ=4, λ=20 

Kd 
α=18, ε=0.001, β=2, 

υ=0.5, λ=1 

LGS-PID Kp α=22, ε=0.001, β=12, 

X position υ=1.27, λ=2.1 

Ki 
α=20, ε=0.001, β=2, 

υ=1.4, λ=2 

Kd 
α=8, ε=0.001, β=1.2, 

υ=5, λ=3 

LGS-PID 

Y position 

Kp 
α=12, ε=0.001, β=6, 

υ=3.7, λ=2 

Ki 
α=13, ε=0.001, β=3.7, 

υ=5.4, λ=2.5 

Kd 
α=9, ε=0.001, β=2, 

υ=5.2, λ=2 

LGS-PID 

Ψ angle 

Kp 
α=7, ε=0.001, β=4, 

υ=7, λ=1.7 

Ki 
α=8, ε=0.001, β=3, 

υ=5, λ=2 

Kd 
α=11.4, ε=0.001, β=2, 

υ=2, λ=1 

 

0 20 40 60 80
0

0.5

1

1.5

2

2.5

Time (s)

X
 p

o
s
it
io

n
 (

m
)

 

 

0 20 40 60 80
0

0.5

1

1.5

2

2.5

Time (s)

Y
 p

o
s
it
io

n
 (

m
)

 

 

PID control

Desired

LGS-PID control

PID control

Desired

LGS-PID control

 

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

Z
 p

o
s
it
io

n
 (

m
)

 

 

0 20 40 60 80

0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

y
a
w

 a
n
g

e
 (

ra
d

)

 

 

PID control

Desired

LGS-PID control

PID control

Desired

LGS-PID control

 

0 20 40 60 80
-0.1

-0.05

0

0.05

0.1

Time (s)

p
it
c
h

 a
n

g
le

 (
ra

d
)

 

 

0 20 40 60 80
-0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

ro
ll 

a
n
g

le
 (

ra
d

)

 

 

PID control

LGS-PID control

PID control

LGS-PID control

 
Figure 3  Comparison between PID control and 

LGS-PID control 
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Figure 4  Commands u1, u2, u3 and u4 of PID control 

and LGS-PID control 
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Figure 5  Gains Kp, Ki and Kd of LGS-PID control 

The time evolutions of the LGS-PID gains are 

illustrated in Figure 5. Unlike those of the PID 

control, the LGS-PID gains were time-varying to 

adapt to uncertainties, disturbances as can been 

clearly in figure 6. It can be seen in Figure 3, 4 and 

5 that after the fault occurs, Kp decreased to avoid 

system pass due to increase in tracking error. The 

derivative gain Kd remained fixed with a high value 

to make a fast response to sudden changes in 

tracking error. When the system stopped de- 

scending (losing altitude) Kd decreased to let the 

system recover faster and go back to its desired 

position. After the fault, integrator gain Ki also 

increased to help the recovery process. 

5. Conclusion 

In this paper, we presented the Fault-Tolerant 

Lyapunov-Gain-Scheduled PID Control of the full 

Quadrotor helicopter in the presence of the fault. 

Firstly, we started by the development of the dy- 

namic model of the Quadrotor taking into account 

the different physics phenomena, after we are in- 

terested in proposing the FTC controller based on 

Lyapunov method. Simulation results also validated 

that the presented FTC had a satisfactory tracking 

performance and was robust to the external dis- 

turbances. 
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